首页> 外文OA文献 >Multi-Oriented Text Detection and Verification in Video Frames and Scene Images
【2h】

Multi-Oriented Text Detection and Verification in Video Frames and Scene Images

机译:视频帧和场景中的多方向文本检测与验证   图片

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we bring forth a novel approach of video text detection usingFourier-Laplacian filtering in the frequency domain that includes averification technique using Hidden Markov Model (HMM). The proposed approachdeals with the text region appearing not only in horizontal or verticaldirections, but also in any other oblique or curved orientation in the image.Until now only a few methods have been proposed that look into curved textdetection in video frames, wherein lies our novelty. In our approach, we firstapply Fourier-Laplacian transform on the image followed by an idealLaplacian-Gaussian filtering. Thereafter K-means clustering is employed toobtain the asserted text areas depending on a maximum difference map. Next, theobtained connected components (CC) are skeletonized to distinguish various textstrings. Complex components are disintegrated into simpler ones according to ajunction removal algorithm followed by a concatenation performed on possiblecombination of the disjoint skeletons to obtain the corresponding text area.Finally these text hypotheses are verified using HMM-based text/non-textclassification system. False positives are thus eliminated giving us a robusttext detection performance. We have tested our framework in multi-oriented textlines in four scripts, namely, English, Chinese, Devanagari and Bengali, invideo frames and scene texts. The results obtained show that proposed approachsurpasses existing methods on text detection.
机译:在本文中,我们提出了一种在频域中使用傅立叶-拉普拉斯滤波进行视频文本检测的新方法,其中包括使用隐马尔可夫模型(HMM)进行平均的技术。所提出的方法使文本区域不仅在水平或垂直方向上出现,而且在图像中的任何其他倾斜或弯曲方向上出现。直到现在,仅提出了几种研究视频帧中弯曲文本检测的方法,这是我们的新颖之处。 。在我们的方法中,我们首先对图像应用傅立叶-拉普拉斯变换,然后再进行理想的拉普拉斯-高斯滤波。此后,根据最大差异图,采用K均值聚类来获得断言的文本区域。接下来,将获得的连接组件(CC)骨架化以区分各种文本字符串。根据结点去除算法将复杂的组件分解为较简单的组件,然后对不相交的骨架进行可能的组合以得到相应的文本区域。最后,这些文本假设使用基于HMM的文本/非文本分类系统进行了验证。这样就消除了误报,为我们提供了强大的文本检测性能。我们已经在四个脚本(即英语,中文,梵文和孟加拉语),视频内帧和场景文本的多方向文本行中测试了我们的框架。获得的结果表明,该方法在文本检测方面优于现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号